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The intriguing phenomenon of resonance, a pronounced integrator-induced cor-
ruption of a system’s dynamics, is examined for simple molecular systems subject
to the classical equations of motion. This source of timestep limitation is not well
appreciated in general, and certainly analyses of resonance patterns have been few in
connection to biomolecular dynamics. Yet resonances are present in the commonly
used Verlet integrator, in symplectic implicit schemes, and also limit the scope of
current multiple-timestep methods that are formulated as symplectic and reversible.
The only general remedy to date has been to reduce the timestep. For this purpose, we
derive method-dependent timestep thresholds (e.g., Tables 1 and 2) that serve as use-
ful guidelines in practice for biomolecular simulations. We also devise closely related
symplectic implicit schemes for which the limitation on the discretization stepsize is
much less severe. Specifically, we design methods to remove third-order, or both the
third- and fourth-order, resonances. These severe low-order resonances can lead to
instability or very large energies. Our tests on two simple molecular problems (Morse
and Lennard–Jones potentials), as well as a 22-atom molecule, N-acetylalanyl-N′-
methylamide, confirm this prediction; our methods can delay resonances so that
they occur only at larger timesteps (EW method) or are essentially removed (LIM2
method). Although stable for large timesteps by this approach, trajectories show
large energy fluctuations, perhaps due to the coupling with other factors that induce
instability in complex nonlinear systems. Thus, the methods developed here may be
more useful for conformational sampling of biomolecular structures. The analysis
presented here for the blocked alanine model emphasizes that one-dimensional anal-
ysis of resonances can be applied to a more complex, multimode system to analyze
resonance behavior, but that resonance due to frequency coupling is more com-
plex to pinpoint. More generally, instability, apparently due to numerically induced
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resonances, has been observed in the application of the implicit midpoint scheme to
vibrating structures and could be expected also in the simulation of nonlinear wave
phenomena; in such applications it is adequate not to resolve the highest frequency
modes, so the proposed methods could be very useful.c© 1998 Academic Press

1. INTRODUCTION

The motivation for our work is development of more efficient numerical integrators for
the classical-mechanics modeling of biomolecules by Newtonian physics:

M
d2x

dt2
= F(x), (1)

whereM is a diagonal matrix of masses,x is the collective position vector,t is time, and
F(x) is the collective force vector. Several recent reviews on algorithms for MD are available
[7, 13, 21]. Many of the algorithms developed for MD apply also to other phenomena mod-
eled by Hamiltonian systems. Such problems often involve multiple timescales spanning a
wide range. As in most such problems, the highest frequencies have negligible amplitudes.
Hence, the problem is “stiff-oscillatory” in the sense that there exists a much smoother
trajectory of the given system (on a limited time interval) which is negligibly different from
the trajectory being integrated.

Explicit integrators, such as the popular St¨ormer/leapfrog/Verlet method, suffer from a
serious stepsize limitation due to the highest frequency components. A popular way to over-
come this restriction is to impose constraints on bond lengths (and possibly bond angles) and
thereby remove the highest frequencies. The effectiveness of this remedy is limited because
it is based on a crude separation of high- and low-frequency modes. A constrained dy-
namics formulation leads to nonlinear systems of equations having nonsymmetric Jacobian
matrices.

Implicit methods, on the other hand, are better than constrained dynamics for discrimi-
nating between high- and low-frequency modes. Implicit numerical integrators have been
applied to problems of mechanical structures [23] and macromolecules [17, 28]. These
formulations lead to symmetric matrices, which are at least twice as cheap to compute
than the nonsymmetric analogs. However, these matrices are dense and typically expensive
to work with. This integration subproblem of solving a nonlinear system is ameliorated
by the existence of efficient solvers, like TNPACK [22], based on a minimization for-
mulation employing preconditioned conjugate gradient and sparse matrix techniques, but
implicit methods are still not generally computationally competitive with explicit formu-
lations. Still, implicit methods might be useful for exploring phase space, that is, finding
conformations of low free energy and suggesting pathways for conformational changes
[11, 6]. Current techniques for enhanced sampling, like high-temperature dynamics, mis-
represent the true dynamics. In addition, cheap imitations of implicit methods, which
are implicit in only the stiffest terms and/or are only linearly implicit [30], might be
useful.

Symplectic integrators form a large class of methods that possess favorable proper-
ties for the numerical simulation of Hamiltonian dynamical systems [19]. In particular,
symplecticness in the small-timestep regime implies numerical stability without artificial
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damping. However, when multiple timescales are present in the physical system, this nu-
merical stability can typically be attained only if the timestep size is limited to less than the
value based on accuracy considerations alone.

To circumvent this timestep limitation,implicit symplectic schemes have been applied.
Unfortunately, at large timesteps relative to the period of the fastest motion in the sys-
tem, even implicit symplectic integrators can become unstable when applied to nonlinear
Hamiltonian systems. This type of instability has been reported for the implicit midpoint
(IM) method [9, 13, 24] and is surprising, given that IM is not only unconditionally stable
for a harmonic oscillator but exactly conserves energy for all time-steps,1t .

In a more recent study of a nonlinear oscillator integrated by IM, Mandziuk and Schlick
[15] offered additional insights into the mechanisms that trigger nonlinear instability. They
related the numerically perturbed period of the oscillator to the timestep of discretization
and observed high energetic fluctuations, or instability, when these two are in resonance.
This purely numerical artifact is especially severe for third- and fourth-order resonance and,
in the case of the former, always leads to instability. (The resonance ordern refers to the
number of phase space points sampled in a closed orbit of a finite period. A resonance is
labeledm : n if a period cycle of lengthn involvesm rotational sweeps in phase space.)
Furthermore, for the Verlet scheme, it was shown [15] that instability occurs at timesteps
which satisfy the linear stability condition. These instabilities can only be avoided by re-
stricting1t .

Hints of resonance problems can also be found in an interesting article of Sanz-Serna [20].
This study applied the Moser twist theorem to show that if third (3:1) and fourth (4:1) order
resonances can be avoided, stability at equilibrium is guaranteed for the symplectic Euler
method (equivalent to the leapfrog/Verlet method). The consequences of these resonances
are not discussed; see also Ref. [16]. Nonlinear resonance has also been observed in an
explicit semi-analytical symplectic integrator for planetary motion [27].

In general, nonlinear instabilities are encountered for substantially smaller stepsizes than
those predicted by linear stability analysis. Uncovering their primary source in macromolec-
ular dynamics with large timesteps is important for overcoming the instability problem and
increasing the feasible timestep of integration. Finding cures besides just reducing the
timestep forms a major challenge.

In this paper, we present a family of symplectic schemes closely related to IM [25] for
which there is no such stability limitation on the timestep. To illustrate this idea and an-
alyze nonlinear resonances, we apply IM, Verlet, and two new symplectic schemes (EW
and LIM2) to two simple nonlinear systems: two atoms interacting via Morse or Lennard-
Jones potential. To test the idea on a multimode system, we also apply the integrators to a
22-atom molecule, N-acetylalanyl-N′-methylamide (commonly known as alanine dipep-
tide), modeled with the CHARMM forcefield [5]. We thus show how methods can be
designed to delay or essentially eliminate resonance per se and also how simple one-
dimensional analysis of resonances is useful for analyzing behavior in a more complex
molecular system.

In the next section, we review the integration methods used in this paper. Section 3 dis-
cusses the resonance conditions for these schemes and presents methodologies for removal
of instabilities. In Section 4, the results of simple numerical experiments are presented, and
in Section 5 the results for alanine dipeptide are reported. Conclusions are summarized in
Section 6.
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2. A ONE-PARAMETER FAMILY OF INTEGRATION METHODS

A. Definitions

When IM is applied to a harmonic oscillator, the oscillation frequency is distorted depend-
ing on1t . As a result, the numerical phase-angle change per timestep suffers a reduction
from its actual value. This reduction becomes dramatic as the timestep increases. The phase-
angle change never exceedsπ radians per timestep, regardless of the analytical value.

To clarify the relation among various methods, we formulated a one-parameter family of
symplectic integrators [25]. The family’s unifying feature is the discrete approximation to
the force vectorF at timen1t :

Fn = F(Xn + α1t2M−1Fn). (2)

Here,Xn represents the discrete approximation tox at timen1t , and the parameterα charac-
terizes each method in the family. The valueα = 1

4 corresponds to IM (which is equivalent to
the trapezoid method);α = 1

12 becomes the fourth-order St¨ormer–Cowell/Numerov method,
andα = 0 is the known Verlet scheme [25]. The integration scheme is implicit whenα > 0.

The parameterα affects the relationship between the numerical frequency and the ac-
tual frequency of the system. Specifically, the maximum possible phase angle change per
timestepdecreasesas the parameterα increases. Hence, the angle change can be limited!
In particular, the choiceα ≥ 1

2 limits the phase angle change to less than one-quarter of a
period. This should ensure that notable oscillations will not occur due to fourth-order reso-
nance. The scheme corresponding toα = 1

2 was suggested by Zhang and Schlick [29], where
it was termed LIM2 (for a midpoint-variation scheme designed for Langevin dynamics).
The choiceα ≥ 1

3 (including LIM2) guarantees that the phase angle change per timestep
is less than one-third of a period and avoids nonlinear instability for the Morse potential.
We call the scheme corresponding toα = 1

3 “equally weighted” (EW), since the discrete
position vectors at three consecutive timesteps,Xn−1, Xn, Xn+1, are equally weighted for
the force evaluation in a particular form [25] of the scheme (which we call 2M).

The family of methods characterized by Eq. (2) has several equivalent discretization
forms [25] for a givenα. This equivalence means that a local transformation exists to relate
the state variables of one method at a given time to those of the other method.

In this article we use the family form “OneM” (to designate a one-step method and a
midpoint evaluation of forces) [25]. Assuming that at timen1t the position and velocity
vectorsXn andVn are known, the propagation to time(n + 1)1t is then defined by the
expressions:

Xn+1/2 = Xn + 1t

2
Vn, (3a)

Fn+1/2 = F(Xn+1/2 + α1t2M−1Fn+1/2), (3b)

Vn+1 = Vn + 1t M−1Fn+1/2, (3c)

Xn+1 = Xn+1/2 + 1t

2
Vn+1. (3d)

The equation forFn+1/2 is implicit for α 6= 0 (i.e., the unknown force vector appears at
both sides of the equation and cannot be obtained in closed form). Assuming that system
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(1) is conservative, withF(x ) = −∇U (x ), the negative gradient of the potential energy,
system (3) can be solved by minimizing thedynamics function

8(X) = 1

2
1t−2

(
X − Xn

0

)T
M
(
X − Xn

0

)+ αU (X) (4)

for X and then evaluatingF at this point. HereXn
0 = Xn + (1t/2)Vn; see Refs. [17, 29]

for derivation of the dynamics function for implicit methods.

B. Linear Stability and Energy Conservation

We now discretize the equations governing the motion of a harmonic oscillator by system
(3) and perform algebraic rearrangements to obtain the recurrence expressions[

ωXn+1

Vn+1

]
= S

[
ωXn

Vn

]
(5)

for the positions and velocities, where the matrix

S =
[

1 − 1
2(ω1t)2φ ω1t

(
1 − 1

4(ω1t)2φ
)

−φω1t 1 − 1
2(ω1t)2φ

]
(6)

and the parameter

φ = (1 + (ω1t)2α)−1. (7)

Thus, the evolution of the discrete system depends on the properties of the matrixS. Linear
stability is achieved when(ω1t)2φ < 4, i.e.,

(ω1t)2/(1 + (ω1t)2α) < 4. (8)

In this case,Shas imaginary eigenvalues, exp(±i ωeff1t), where

ωeff1t = 2 arcsin

(
ω1t

2

√
φ

)
(9)

= ω1t +
(

1

24
− α

2

)
(ω1t)3 + O((ω1t)5).

Consequently,Scan be decomposed as

S = DQD−1, (10)

where

Q =
[

cosωeff1t sinωeff1t
− sinωeff1t cosωeff1t

]
(11)

and

D = diag

[
1,

(
1 +

(
α − 1

4

)
(ω1t)2

)−1/2
]
. (12)

The matrixQ represents a rotation of−ωeff1t radians in phase space.
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FIG. 1. Effective rotation (ωeff1t) from Eq. (9) versus desired rotation(ω1t) for one timestep for
α = 0, 1

4
, 1

3
, 1

2
.

Note thatα = 1
4 (IM method) implies thatD is the identity matrix, rendering the trans-

formation unitary and guaranteeing exact energy conservation [25]. For other values of
α, the energy oscillates; the ratio of the maximum to minimum energy is given by
max{1+ (α − 1

4)(ω1t)2, (1+ (α − 1
4)(ω1t)2)−1}. Furthermore, deviations ofD from the

identity matrix adversely affect the time-averaged partitioning of energy between kinetic
and potential energy.

Figure 1 shows the effective rotation versus the desired rotation forα = 0, 1
4, 1

3, 1
2 accord-

ing to Eq. (9). (For IM, Eq. (9) simplifies toωeff1t = 2 arctan(ω1t/2)). The straight line
represents the ideal value. We see that, whenω1t is small, all curves approximate the straight
line well, but asω1t increases the curves exhibit different behavior. Asω1t → +∞, the
effective rotations forα = 1

4, 1
3, 1

2 approach the limiting values ofπ, 2π/3, π/2, respec-
tively.

C. Postprocessing

Interestingly, the symplectic transformation

xn =
(

1 +
(

α − 1

4

)
(ω1t)2

)−1/4

Xn, pn =
(

1 +
(

α − 1

4

)
(ω1t)2

)1/4

Pn (13)

yields “postprocessed” values that exactly conserve energy [25]. (Here we use momentaP
andp instead of velocityV .) It is unclear, however, how to define a meaningful transforma-
tion for postprocessing the values obtained for the general nonlinear conservative system
(Eq. (1)) so that energy conservation is achieved if the system is linear. For this purpose,
we propose the transformation

x = X + ψ(ηM−1Uxx(X))ηM−1Ux(X), (14)

p = (
I + (ψ(ηM−1Uxx(X))ηM−1Ux(X))X

)−T
P, (15)

where the subscriptX denotes differentiation with respect toX, η = (α − 1
4)(1t)2, and

ψ(ξ) = (1 + ξ)−1/4 − 1

ξ
= −(1 + ξ)−1/4(1 + (1 + ξ)1/4)−1(1 + (1 + ξ)1/2)−1. (16)

This function is well defined ifξ is generalized to a symmetric positive definite matrix.
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The postprocessing formulation above is symplectic for general nonlinear problems and
yields valuesx and p that exactly conserve energy in the linear case. (To see that the
transformation is symplectic, note that it arises from the second-kind generating function
S(X, p) = pT X+ pTψ(ηM−1Uxx(X))ηM−1Ux(X)). This transformation is not cheap, but
it is not intended to be applied in practice. Rather, its purpose here is to permit comparison
of methods on the basis of the accumulating part of the error, not removable by a phase space
transformation. For a cheaper postprocessing, we could approximateψ by a polynomial on
some interval of values withξ ranging from 0 to(α − 1

4)(ω1t)2. Further approximations
are also possible [14, 25] based on differencing the computed values ofX andP.

The transformation (14), (15) is not necessarily the one that best conserves the energy;
rather it is a heuristic choice that does remarkably well. Postprocessing is discussed further
in Refs. [14, 25], where it is shown that there are limits on the accuracy improvements that
are possible with such transformations.

3. NONLINEAR INSTABILITY, RESONANCE, AND A POSSIBLE CURE

Nonlinear stability for fixed1t can be investigated analytically in the neighborhood of
an energy minimum(x0, p0) for a system with one degree of freedom via the Moser twist
theorem. Analysis is possible via asymptotic expansions in powers ofx − x0 and p − p0.

Essentially behavior depends on the angle of rotation per step (see Appendix 7 of Ref.
[1]); and is given by the linear terms of the expansion. If this is one-third of a circle (3 : 1
resonance), the equilibrium point is unstable. If it is one-fourth of a circle (4 : 1 resonance),
the situation is indeterminate—it will depend on the mapping defined by one timestep of
the method applied to the problem. For higher order resonances (e.g., rotation of two-fifths
of a period, 5 : 2 resonance), the equilibrium point is normally stable [20]. The result in
[20] can be paraphrased as follows: Assume that we have a numerical method described by
an area-preserving map in the plane for which the origin is an elliptic equilibrium so that
the eigenvalues of the linearized map are complex conjugatesλ andλ̄ with unit modulus.
Further, assume thatλ is neither a cubic nor a fourth root of unity. Then the origin is a
stable equilibrium except, perhaps, in the “degenerate” case that the mapping acts as a rigid
rotation plus terms of order 4 inx − x0 and p − p0.

Mandziuk and Schlick observed that IM applied to the Morse oscillator (see formulation
below) exhibits instability for the 3 : 1 resonance but not for 4 : 1 nor higher-order resonances
(although energy fluctuations are very large) [15]. For a large complex system with many
fundamental frequencies or instantaneous normal modes, this suggests that the timestep
mustbe limited to less than one-third or one-quarter of the effective period of the highest-
frequency mode,depending on the scheme and possibly the problem.

It is evident from Eq. (9) and Fig. 1 that a sufficiently largeα can lower the maximum
rotation angle per step as needed. In particular, since a resonance of ordern means thatn
phase space points are computed per effective period, resonances of ordern and lower will
be eliminated ifα is large enough so that the numerical rotation per step satisfies

ωeff1t < 2π/n (17)

for all 1t . This is equivalent to

α ≥
(

2 sin
π

n

)−2

. (18)
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The first few values given by this formula are

n 2 3 4 5 6

α 1
4

1
3

1
2

(5+√
5)

12 1

The valueα = 1
4 (IM scheme) is the minimum value needed for unconditional linear

stability; the valueα = 1
3 (EW scheme) is the smallest value that guarantees uncondi-

tional nonlinear stability for the Morse potential; and the valueα = 1
2 (LIM2) or greater

guarantees nonlinear stability for general potentials.
For a givenα, we can also calculate theupper limiton thetimestep(rather than lower

limit on α) needed to avoid a resonance of ordern. Specifically, if(2 sin(π/n))−2 > α, a
timestep satisfying

ω1t <
2 sin(π/n)√

1 − 4α sin2(π/n)
(19)

avoids a resonance of ordern.
In Table 1 we list these limiting values for interesting combinations ofα andn. The values

for n = 2 are also the limits onω1t for linear stability. We show in the next section for
Morse and Lennard–Jones potentials that for Verlet(α = 0) the 4 : 1 resonance is unstable,
and hence nonlinear stability imposes a restriction of

√
2 onω1t , significantly less than

the linear limit of 2. Experiments suggest, however, that the 4 : 1 resonance is stable for
α = 1

4, 1
3, 1

2. This points to a nonlinear stability limit of 2
√

3 for IM (α = 1
4) and no restriction

for EW (α = 1
3). Numerical results also suggest significant fluctuations due to 5 : 1 and 6 : 1

resonances for Verlet, 4 : 1 and 5 : 1 resonances for IM, and 4 : 1 resonance for EW. In
contrast, LIM2(α = 1

2) exhibits no such erratic patterns.
In unconstrained molecular dynamics of biomolecules modeled at atomic resolution,

the highest mode has a period of about 9 fs, corresponding to a vibrational frequency of
3600 cm−1. For Verlet, the analysis above suggests a limit on the timestep of 2.0 fs to prevent
instability, 1.7 fs to avoid 5 : 1 resonances, and 1.4 fs to avoid 6 : 1 resonances.

Not surprisingly, we face a trade-off between stability and accuracy. As indicated by
Eq. (9), the discretization error is proportional to|α − 1

12| for smallω1t , so IM has twice
the error of Verlet, EW has three times the error of Verlet, and LIM2 has an error larger by
a factor of five. This is not the case, though, for large values ofω1t (Fig. 1), for which the
Verlet curve diverges most rapidly. In addition, when stability is limiting the stepsize, EW
(and possibly also LIM2) permits a larger timestep than does Verlet for equal accuracy.

TABLE 1

Stability Limit on ω∆t for Interesting Combinations of α and n

Resonance order Verlet(α = 0) IM (α = 1
4
) EW (α = 1

3
)

n = 2 2 ∞ ∞
n = 3

√
3 ≈ 1.72 2

√
3 ≈ 3.46 ∞

n = 4
√

2 ≈ 1.41 2
√

6 ≈ 2.45

n = 5 1
2

√
10− 2

√
5 ≈ 1.18 2

√
5 − 2

√
5 ≈ 1.45

n = 6 1
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4. SIMPLE NUMERICAL EXPERIMENTS: EW, LIM2 AND IM VERSUS VERLET

We first examine simple systems where resonance phenomena are much easier to observe
and interpret.

A. Morse Potential

We begin with the HBr Morse potential as used previously [15],

U (r ) = D
(
1 − e−S(r −r0)

)2
, (20)

wherer is the bond length,D = 90.5 kcal/mol,S= 1.814 Å−1, andr0 = 1.41 Å (1 kcal
mol = 4.184× 10−4 amuÅ2/fs2). The two atoms with massesm1 andm2 move in one
dimension. Their positions are denoted asx1 andx2 (x1 < x2), and they interact according
to the force produced by the potentialU (r ). The bond length is then given byr = x2 − x1,
and its conjugate momentum byp = µ(ẋ2− ẋ1), whereµ is the reduced mass of the diatom:
µ = m1m2/(m1 + m2). In terms of these variables, the motion of the system satisfies the
equations

ṙ = p

µ
, ṗ = −Ur (r ), (21)

associated with the Hamiltonian

p2

2µ
+ U (r ) + constant translational kinetic energy. (22)

As before, we usem1 = 1.00785 amu andm2 = 79.904 amu for the hydrogen and bromine
atoms, respectively (µ = 0.9953 amu) [15]. For the calculations illustrated in Figs. 2 and
3 the same initial conditions are also used:r (0) = 1.4155 Å and p(0) = µ(1.545 Å)/

(48.888 fs).
To inspect resonance trends, we compute the energy variation as a function of1t . The

reported values represent themaximum energy variationover 1000 steps,expressed relative
to the initial energy. The interval between various timesteps is chosen adaptively, so as to
achieve an informative plot clustering near resonances.

The effect of reducing the energy error by postprocessing for Verlet and EW can be seen in
Fig. 2 (recall that postprocessing has no effect for IM). Plotted for a range of timesteps is the
relative energy variation for a solution not subject to postprocessing, a cheaply postprocessed
solution that uses central time differencing [25], and a fully postprocessed solution.

For Verlet (Fig. 2a), the graphs have spikes of increasing heights corresponding to 7 : 1,
6 : 1, 5 : 1, and 4 : 1 resonances, the last of which becomes unstable. The straight dashed line
corresponds to the depth of the potential energy well. This plot is very similar to that shown
in Mandziuk and Schlick [15]. It is different, however, from Fig. 4 of Ref. [16], where the
maximum energy variation is plotted as a function of initial energy for a fixed timestep;
this latter plot is based on the same data as numerical phase space plots, which we give in
Figs. 5b–5d. For EW, in contrast to Verlet, only the 4 : 1 resonance appears (for all three
degrees of postprocessing) and it is stable (Fig. 2b). Note, that the timestep range for EW
is five times larger than for Verlet. Also observe that resonance fluctuations in both figures
are revealed more clearly after postprocessing. For that reason, in the further analysis in
this section, only postprocessed results are displayed.
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FIG. 2. The effect of postprocessing on relative energy variation versus timestep for the Morse oscillator for
the (a) Verlet(α = 0) and (b) EW(α = 1

3
) schemes. Shown for comparison is the dissociation energyD divided

by the initial energy.
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FIG. 3. Relative energy variation versus timestep for the Morse oscillator for postprocessed Verlet(α = 0,
dashed line) and IM(α = 1

4
, solid line with instability near 7 fs), postprocessed EW (α = 1

3
, thick solid line with

only one peak near 5 fs), and postprocessed LIM2 (α = 1
2
, solid line with no peaks). Shown also is the dissociation

energyD divided by the initial energy.

FIG. 4. Relative energy variation versus timestep forhigher initial energyfor postprocessed Verlet (α = 0,
dashed line) and postprocessed EW (α = 1

3
, solid line). Shown also is the dissociation energyD divided by the

initial energy.
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FIG. 5. Morse oscillator orbits for increasing values of energy: (a) analytical solutions, versus numerical
solutions at1t = 4 fs: (b) IM (α = 1

4
); (c) EW (α = 1

3
); and (d) LIM2 (α = 1

2
).

The relative energy variations for the three implicit methods (IM, EW, LIM2) are pre-
sented in Fig. 3 and compared to results obtained with Verlet. The graph for IM (bottom
solid line) has, from left to right : spikes of increasing heights, corresponding to the 6 : 1,
5 : 1, and 4 : 1 resonances; an open peak around1t = 7 fs for the unstable 3 : 1 resonance;
and a spike around 12 fs for the 5 : 2 resonance. (Then : m resonance can be identified from
the trajectory values as a periodic cycle of lengthn involving m rotational sweeps in phase
space). For EW (middle solid line), the 4 : 1 resonance is significantly less severe than the
5 : 1 resonance of Verlet. LIM2 (top solid line), which corresponds to the largestα, does
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FIG. 5—Continued

not exhibit resonance, but rather a difficulty in solving the nonlinear equation for large
timesteps. The energy error is also larger.

Figure 4 shows the effect of increasing the initial energy for EW and Verlet; by doubling
both p(0) andr (0) − r0, we roughly quadruple the energy error. Now we see an increase
in the error, but the resonance pattern remains essentially the same (compare with Fig. 3).

Nonlinear resonances can also be visualized from phase-space portraits as island regions.
In Fig. 5a we show the analytical orbits for the Morse oscillator corresponding to increasing
energy levels (from the innermost orbit outward) [15]. Figures 5b–5d show the phase space
portraits corresponding to IM, EW, and LIM2, respectively, each with1t = 4 fs. The period



             

14 SCHLICK ET AL.

of the Morse oscillator is energy dependent and for the range for energies covered in Fig. 5a
it varies from around 12.5 fs to 40 fs. The plot for IM reveals resonances of orders 9 : 2,
5 : 1, and 6 : 1. The 9 : 2 resonance is just outside the inner two orbits (it was determined
to be 9 : 2 rather than 9 : 1 resonance by inspection of the trajectory). The 5 : 1 and 6 : 1
resonances are outside, in a chaotic sea of instability. EW (Fig. 5c) exhibits resonances of
orders 9 : 2, 5 : 1, 6 : 1, 7 : 1, and 8 : 1. LIM2 shows resonances of orders 6 : 1, 7 : 1, 8 : 1, and
9 : 1.

It is clear from the plots that with increasingα the onset of chaos is shifted towards higher
energies (lower frequencies). In all cases, however, there are serious deviations from the
analytic trajectory as the energy increases. The square-shaped, lower energy contours for
IM indicate the timestep proximity to the fourth-order resonance. The contours for EW and
LIM2 are smoother, but with increasingα the region of phase space with a bond length
below the equilibrium value is more corrupted.

B. Lennard–Jones Potential

We now consider a Lennard–Jones potential describing the interaction between two argon
atoms [18],

U (r ) = ε(1 − 2(σ/r )6)2, (23)

whereε = 120 K× kB andσ = 3.4 Å (the Boltzman constantkB = 8.244× 10−7 amuÅ2/
fs2/K). We use the massesm1 = m2 = 39.95 amu(µ = 19.975 amu)and the initial conditions
r (0) = 1.15σ and p(0) = 0.

Figure 6 shows the corresponding energy for Verlet, IM, and EW. The dotted curve,
for Verlet, has from left to right spikes of increasing height for the 7 : 1, 6 : 1, and 5 : 1
resonances. The solid graph, for IM, has a spike for the 6 : 1 resonance. The dashed curve
for EW has no spikes. Verlet is more accurate than IM and EW at small timesteps. That trend
reverses with increased1t . It appears that overall energy fluctuations, as well as nonlinear

FIG. 6. Relative energy variation for postprocessed Verlet (α = 0, dotted line) versus IM (α = 1
4
, solid line)

and EW (α = 1
3
, dashed line), obtained for a Lennard–Jones potential for argon as a function of the timestep.

Shown also is the dissociation energyε divided by the initial energy.
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resonance peaks, are far less dramatic for the Lennard–Jones than the Morse potential.
Typically, only the Lennard-Jones potential is used in most biomolecular force fields.

In sum, simulation results for these simple systems clearly show that our symplectic
implicit schemes EW(α = 1

3) and LIM2 (α = 1
4) eliminate the low-order resonances that

lead to the highest energy fluctuations or instability in other methods like IM. Our postpro-
cessing strategy is effective for accentuating resonance trends. Still, energy fluctuations are
relatively large even without the sharp resonance effect, and these effects on the system’s
dynamic properties should be more closely examined.

5. APPLICATION TO MOLECULAR DYNAMICS OF A PEPTIDE MODEL

Our goals in this section are twofold. First, we seek to determine whether the symplectic
implicit integrators EW and LIM2 improve numerical behavior over IM by eliminating,
or reducing the severity of, low-order resonances. Second, we seek to establish how good
our harmonic-oscillator analysis of resonances for IM is for a complex, nonlinear, and
multiple-timescale system. In particular, is it possible to determine the discrete timestep
values, where a resonance of a given order will occur? That is, can the source of resonance
be attributed to one vibrational mode? Furthermore, if discrepancies occur between linear
theory and nonlinear applications, how large are they and how can they be interpreted?

We choose the model system N-acetylalanyl-N′-methylamide shown in Fig. 7. Its chem-
ical composition is given by CH3–CO–NH–CHCH3–CO–NH–CH3. This 22-atom system
contains representative characteristics of polypeptides (such as main chain dihedral-angle
motion) and is particularly flexible, making it a good test case.

Calculations were performed with the CHARMM program [5] (version 24b1), modified
to perform implicit integration in the OneM form (system (3)) for a specifiedα > 0. An
all-atom representation was used with the CHARMM parameter set 22. Minimization of the
dynamics function (4) was accomplished with the truncated-Newton minimization package
TNPACK [22], usingXn as the initial condition. The TNPACK convergence parameter
EPSF was set in the range 10−10–10−12. Even though the timestep in the implicit scheme is
larger by a factor of up to 10, the implicit schemes are more expensive for covering the total
trajectory time. As we have shown in a closely related context [2], speedup in reference to
explicit simulations at 0.5-fs timesteps would only be obtained for the dipeptide when the
timestep exceeds 20 fs.

FIG. 7. Blocked alanine (“dipeptide”) model.
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To identify the timesteps at which instabilities occur, trajectories of 100,000 steps were
analyzed for a range of timesteps (in increments of 0.1 fs). For the smallest1t used,
1 fs, 100,000 steps correspond to 100 ps. The average values of the total energyE and
its components are accumulated and displayed after 20,000, 60,000, and 100,000 steps
to clarify the energetic convergence pattern. Plots of〈E〉 versus1t for Verlet, IM, EW,
and LIM2 are shown in Fig. 8. We emphasize that longer simulations, or a more frequent
sampling of1t and different starting points, might produce different curves.

Note also that Fig. 8 reveals a quadratic growth of error with the timestep, confirming the
second-order accuracy of the symplectic methods applied here. Low-order methods are typi-
cally used in biomolecular MD since the highly approximate nature of the potential functions
does not merit high-order integrators. In addition, the existence of serious instabilities due
to the very stiff, oscillatory high-frequency degrees of freedom argues against higher-order
schemes which will likely only have stricter restrictions on the timestep, thereby increasing
the practical simulation cost considerably.

FIG. 8. E vs1t for the Verlet(α = 0), IM (α = 1
4
), EW(α = 1

3
), and LIM2(α = 1

2
) schemes for the peptide

model. The three lines correspond to averaging energies over an increasing number of steps: 2× 104 (dotted line);
6 × 104 (dashed line); and 105 (solid line).
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A. The Effect of the Parameterα

Instabilities are revealed in Fig. 8, which displays patterns of〈E〉 versus1t for the
Verlet, IM, and EW schemes. As expected from our analysis of simple problems, the onset
of instability is delayed with increasingα. For Verlet, the onset of instability emerges at
timesteps around 2.8 fs. For IM, instability emerges around 4.5 fs, and for EW around 6 fs.
The plot for LIM2 (bottom panel) does not display energy spikes. Instead,〈E〉 increases
smoothly, but significantly, over the range of analyzed1t (1–11 fs).

B. Resonance Analysis of IM

Explaining the instabilities is much more involved for a multimode system than for a
simple system. First, an accurate comparison of fluctuations would require a more ex-
tended sampling of their values than done here. This entails very long calculations for each
timestep—especially near resonances. (For the Morse oscillator we used 100,000 steps to
ensure reasonable convergence near resonance [15].) Second, intramolecular energy trans-
fer prevents clear analysis of the resonance origin; it cannot be easily determined whether
certain modes are more active due to numerical artifacts or to mode coupling. In addi-
tion, the interplay between these two factors makes the long calculations impractical for
resonance diagnostics—extension of simulation time increases the probability of energy
transfer.

To identify the fastest modes in alanine dipeptide and apply our analysis for one-
dimensional (1D) systems [15], we generated a power spectrum (Fig. 9) from an IM trajec-
tory using1t = 0.5 fs. The main peaks in the high frequency region correspond to N–H bond
stretching around 0.63 fs−1 (period of 9.97 fs) and C–H bond stretching around 0.55 fs−1

(period of 11.42 fs). In Table 2 we list the timesteps for IM and Verlet that lead to 3 : 1 and
4 : 1 resonances for these frequencies according to our 1D analysis. A comparison of the
values in Table 2 with Fig. 8 reveals the possible cause of instability.

For Verlet, instability may result from the third-order resonance of an N–H stretch, the
fourth-order resonance of a C–H stretch, or an interplay between both vibrations. However,

FIG. 9. Power spectrum for the dipeptide from an IM trajectory using1t = 0.5 fs, with some typical frequen-
cies identified.
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TABLE 2

Timesteps for the 3 : 1 and 4 : 1 Resonances of N–H and C–H Vibrations According

to Analysis of One-Dimensional Systems for IM and Verlet Integrators

Resonance
Verlet IM

order N–H C–H N–H C–H

n = 3 2.8 3.2 5.5 6.3
n = 4 2.2 2.6 3.2 3.6

Note. The estimates for the resonant timesteps from a one-dimensional [14] analysis are obtained
as follows. Equation (9) of the text gives the timestep and method-dependent angular frequency
for the symplectic method:θeff = ωeff1t = 2 arcsin(

√
φω1t/2), whereφ = (1 + α(ω1t)2)−1 and

ω is the natural frequency of the system. For IM(α = 1/4) ωeff = (2/1t) arctan(ω1t/2), and for
Verlet (α = 0) ωeff = (2/1t) arcsin(ω1t/2). As derived in Ref. [14], the resonant timestep of or-
der n : m can be obtained by using the functionωeff in the expressionn1tωeff = 2πm, since those
timesteps correspond to a sampling ofn phase-space points inm revolutions. This substitution yields
1t = (2/ω) tan(πm/n) for IM and 1t = (2/ω) sin(πm/n) for Verlet. Forn = 3, 4, andm= 1, we
have:1t3,1 = 2

√
3/ω and1t4,1 = 2/ω for IM; 1t3,1 = √

3/ω and1t4,1 = √
2/ω for Verlet.

for IM, the analysis of N–H and C–H stretching vibrations alone is insufficient to explain
the instability onset at about 4.5 fs.

Figure 10 displays the average kinetic (Ek) and potential (Ep) energy, as well as the
Ep components, for IM. We see thatEk and Ep are partitioned nearly equally and reflect
the pattern of instabilities of the total energy. Bond-stretching, as well as angle-bending
energies increase significantly in the region of instabilities; in contrast, torsional, van der
Waals (vdW), and electrostatic contributions remain nearly constant throughout the range
of timesteps examined. The rapid growth of the angle-bending energy—as fast as the bond-
stretching term—was surprising. This points to a strong coupling between the two modes
in the timestep region of instability.

Figure 11 follows the timestep variation of the power spectrum obtained for a hydrogen
atom involved in an N–H bond for the IM method. The position of the high frequency peak
follows the predicted value according to Eq. (9). Hence, we expect 3 : 1 resonance to occur at
1t = 5.5 fs. Indeed, the plots in Fig. 12 of the bond length evolution at this timestep for both
N–H bonds, as well as for the nearby1t = 5.2 and1t = 5.7 fs, show three branches. These
branches indicate the proximity to third-order resonance. Yet, judging from the rate of aver-
age energy growth, the instability at1t = 5.5 fs appears weaker than at1t = 5.2 or 5.7 fs.

The average values of N–H bond lengths and their fluctuations, although not converged,
do not reveal any growth at the timesteps associated with resonance. This suggests that the
N–H bond resonance does not cause the instability observed, even though it has the shortest
period. To confirm this, we modified the stretching constants for the N–H bond terms by
decreasing their value by about 30%. Indeed, this increase in the associated period did not
remove instabilities at1t = 5.2, 5.5, and 5.7 fs. Clearly, the N–H bond stretch, modeled by
a harmonic potential (for which IM is stable) is not the culprit here: the nonlinear forces
acting on the bond are not sufficiently strong to induce instability.

What, then, is the origin of this instability? Inspection of the average values of bond
lengths and their fluctuations (though not well converged) points to the C–H bonds as a
possible source. The variation of the power spectrum with the timestep obtained for one
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FIG. 10. Average kinetic(Ek) and potential(Ep) energy, as well asEp components, for the IM scheme for
the dipeptide model. The three lines correspond to averaging energies over an increasing number of steps: 2× 104

(dotted line); 6× 104 (dashed line); and 105 (solid line).
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FIG. 11. Timestep variation of the power spectrum for a hydrogen atom in an N–H bond as obtained from
the IM trajectory.

C–H bond in a methyl group is presented in Fig. 13. While the main peak follows the
expected shift of frequency with the timestep (Eq. (9)), a band of lower amplitude peaks
appears on the high-frequency region of the main band for1t > 2.0 fs. This band ends with
a peak in the region of 0.46–0.50 fs−1, which does not follow the prediction of Eq. (9). This
peak is only slightly shifted toward lower values of frequencies with increasing1t .

The instability caused by this peak should occur just below the 4.5 fs timestep. This
band might result from a timestep-corrupted coupling between the C–H bond stretching
and H–C–H angle bending modes. This coupling increases in strength due to the timestep-
induced shift of frequencies. A large increase of the angle-bending energy in the instability
region gives further support to our suggestion that angle bending may be an instability
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FIG. 11—Continued
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FIG. 12. Bond-length evolution for the dipeptide at timesteps1t = 5.2, 1t = 5.5, and1t = 5.7 fs for both
N–H bonds, corresponding to the IM trajectory model.
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FIG. 12—Continued
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FIG. 13. Variation of the power spectrum with the timestep for one C–H bond in a methyl group for the IM
trajectory of alanine dipeptide.

culprit. Inspection of the spectrum for1t = 5.2 fs in Fig. 13 shows a small peak around
0.405 fs−1, which may be in resonance of order 3 with1t . Indeed, a decrease of C–H
bond-stretching force constant successfully eliminated instability for1t = 5.2 fs (as seen
from the 100,000-step simulations). Still, instability remained at1t = 5.5 or 5.7 as before.

For 1t = 5.7 fs and higher, the onset of instability is very fast. There are at least three
possible explanations to this observation of chaotic behavior.

First, adequate averaging for the Hamiltonian trajectory cannot occur when the timestep
is so large.

Second, instability may be caused by anoverlapof the principal timestep resonances.
Such chaotic zones induced by an overlap of resonances associated with the high-frequency
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FIG. 13—Continued
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terms are revealed by Wisdom and Holman through their nonlinear stability analysis of
the symplectic mapping for a planetaryn-body problem [27]. They determine the borders
and mechanisms of these gross instabilities through the application of heuristic tools of
nonlinear dynamics such as the Chirikov overlap criterion. Such criteria for estimating the
widths of chaotic zones have been associated with regions near the pendulum separatrix;
the closer a trajectory is to the separatrix the smaller the timestep must be to avoid this gross
instability. This situation might only be relevant to molecular systems when the energy is
large, say close to the bond dissociation limit.

A third possibility for the observed instability is some transient, nonlinear, and high-
frequency motion present in the system’s dynamics. Small, cumulative local fluctuations
can induce sudden and large conformational changes, even for a relatively small system such
as our dipeptide. Nonbonded interactions are one possible source of instability that limit
the timestep in MD simulations. We find that the van der Waals energy does not increase
substantially with the timestep (Fig. 10) for the dipeptide, but changes in the electrostatic
component are larger. For a molecular system in solvent, both forces are expected to be
stronger and play a major role in governing the system’s dynamics. In addition, the formation
and breakage of inter- and intramolecular hydrogen bonds for a solvated macromolecule
can dramatically increase the likelihood of instabilities [21].

6. CONCLUSIONS

This work examined the intriguing phenomenon of resonance in MD simulations. Reso-
nance is a pronounced integrator-induced corruption of a system’s dynamics. This source of
timestep limitation is not well appreciated, in general, and certainly analyses of resonance
patterns have been few in connection to MD. Nonetheless, resonances are present in the
commonly used Verlet integrator [15], as well as in symplectic implicit schemes typically
associated with favorable properties. These resonances can only be avoided by restricting
the timestep beyond estimates based on linear stability. Formulas for this purpose are given
in Tables 1 and 2. Table 1, in particular, includes timestep thresholds for the popular Verlet
method.

As an extension of our resonance analysis for the implicit midpoint (IM) method [15], we
considered here a family of symplectic implicit schemes, parameterized byα, that exhibit
different resonance patterns. Our goal was to eliminate the most severe resonances (third
and fourth order) observed for IM (α = 1

4) that lead to instability and very large energies,
respectively, on a Morse oscillator. Our theory suggested that both the EW (α = 1

3) and LIM2
(α = 1

2) integrators are better than IM since the limit on the maximum possible phase-angle-
change per timestep is smaller than IM (Fig. 1). Thus, according to linear stability analysis,
the EW method eliminates the third-order resonance, and LIM2 eliminates both third- and
fourth-order resonances.

Our numerical experiments on two simple nonlinear systems—a Morse oscillator and
a Lennard–Jones system—confirmed this analysis. That is, methods can be designed to
remove specific resonances. Furthermore, our application to a more complex dipeptide
model found EW and LIM2 to yield improvements over IM when the timestep was large
relative to the fastest frequency of the system. Still, the growth of energy fluctuations with
the timestep, although far less erratic than that of IM, is large for EW and LIM2 when
1t > 6 fs. For small timesteps, the increase of the systematic discretization error with the
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timestep is 3 and 5 times larger than Verlet, respectively, for EW and LIM2. Together
with the added cost of the implicit formulation (minimization of a nonlinear function at
each timestep), the benefits of using these schemes is unclear, even if high accuracy is not
commensurate with the accuracy of the governing force fields. One possible utility of the
methods developed here at such large timestep regimes is for enhanced sampling purposes.
Such sampling questions may be overall more important in macromolecular simulations
than determining a system’s dynamics.

Interesting also for the dipeptide was our analysis of the resonance patterns of IM.
We found linear analysis to be helpful but not sufficient for identifying the timesteps at
which resonance should occur (fractions of the characteristic period). In particular, it was
difficult to attribute resonance to one particular vibrational mode. Rather, we found that the
complex interplay among intramolecular modes—namely bond stretching, angle bending,
and torsional motion—leads to instabilities at much shorter timesteps than dictated by linear
analysis. This is true for all the implicit methods analyzed here (which are A-stable). Hence,
the notion of resonance is blurred for multiple-timescale systems.

The tools presented here—a family of implicit symplectic integrators, postprocessing,
and predictive resonance theory for nonlinear systems—might also be useful in general
for analyzing biomolecular dynamics. Clearly, our EW and LIM2 methods are steps in
the right direction to eliminate nonlinear resonance—since they are effective on simple
systems. However, the nonlinear scaling of frequencies with the timestep poses a problem
for multidimensional systems, and further enhancements in this class of symplectic implicit
methods are required if much larger timesteps will be used.

An important related problem is the noted resonance [3, 4, 8, 12] exhibited by symplectic
generalizations of the Verlet method to multiple timesteps [10, 26]. These methods use a
large timestep for the slowly varying forces and are most likely limited to 4 or 5 fs, near half
the period of the fastest motion. The resonances observed for multiple-timestep schemes
occur for linear as well as nonlinear problems [8] and thus differ from the type of resonance
discussed in this article. A linear analysis for several multiple-timestep schemes in Barth
and Schlick [3] shows that resonance can be eliminated by a special merging of the slow
and fast forces, as used in the LN (so called for its origin in a Langevin/Normal-mode)
scheme [2]. The successful idea used in LN can be generally applied. A symplectic scheme
for overcoming the 5-fs timestep barrier has also been proposed [8].
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