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The intriguing phenomenon of resonance, a pronounced integrator-induced cor-
ruption of a system’s dynamics, is examined for simple molecular systems subject
to the classical equations of motion. This source of timestep limitation is not well
appreciated in general, and certainly analyses of resonance patterns have been few in
connection to biomolecular dynamics. Yet resonances are present in the commonly
used Verlet integrator, in symplectic implicit schemes, and also limit the scope of
current multiple-timestep methods that are formulated as symplectic and reversible.
The only general remedy to date has been to reduce the timestep. For this purpose, we
derive method-dependent timestep thresholds (e.g., Tables 1 and 2) that serve as use-
ful guidelines in practice for biomolecular simulations. We also devise closely related
symplectic implicit schemes for which the limitation on the discretization stepsize is
much less severe. Specifically, we design methods to remove third-order, or both the
third- and fourth-order, resonances. These severe low-order resonances can lead to
instability or very large energies. Our tests on two simple molecular problems (Morse
and Lennard—Jones potentials), as well as a 22-atom molecule, N-acetylatanyl-N
methylamide, confirm this prediction; our methods can delay resonances so that
they occur only at larger timesteps (EW method) or are essentially removed (LIM2
method). Although stable for large timesteps by this approach, trajectories show
large energy fluctuations, perhaps due to the coupling with other factors that induce
instability in complex nonlinear systems. Thus, the methods developed here may be
more useful for conformational sampling of biomolecular structures. The analysis
presented here for the blocked alanine model emphasizes that one-dimensional anal-
ysis of resonances can be applied to a more complex, multimode system to analyze
resonance behavior, but that resonance due to frequency coupling is more com-
plex to pinpoint. More generally, instability, apparently due to numerically induced
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2 SCHLICK ET AL.

resonances, has been observed in the application of the implicit midpoint scheme to
vibrating structures and could be expected also in the simulation of nonlinear wave
phenomena; in such applications it is adequate not to resolve the highest frequency
modes, so the proposed methods could be very usefidoss Academic Press

1. INTRODUCTION

The motivation for our work is development of more efficient numerical integrators 1

the classical-mechanics modeling of biomolecules by Newtonian physics:
2

M 3—:2( = F(x), Q)
whereM is a diagonal matrix of masses,s the collective position vectot,is time, and
F (x) isthe collective force vector. Several recent reviews on algorithms for MD are availe
[7, 13, 21]. Many of the algorithms developed for MD apply also to other phenomena m
eled by Hamiltonian systems. Such problems often involve multiple timescales spanni
wide range. As in most such problems, the highest frequencies have negligible amplitt
Hence, the problem is “stiff-oscillatory” in the sense that there exists a much smoo
trajectory of the given system (on a limited time interval) which is negligibly different fro
the trajectory being integrated.

Explicit integrators, such as the populaoBter/leapfrog/Verlet method, suffer from a
serious stepsize limitation due to the highest frequency components. A popular way to «
come this restriction is to impose constraints on bond lengths (and possibly bond angles
thereby remove the highest frequencies. The effectiveness of this remedy is limited bec
it is based on a crude separation of high- and low-frequency modes. A constrainec
namics formulation leads to nonlinear systems of equations having nonsymmetric Jacc
matrices.

Implicit methods, on the other hand, are better than constrained dynamics for discr
nating between high- and low-frequency modes. Implicit numerical integrators have &
applied to problems of mechanical structures [23] and macromolecules [17, 28]. Tt
formulations lead to symmetric matrices, which are at least twice as cheap to com
than the nonsymmetric analogs. However, these matrices are dense and typically expe
to work with. This integration subproblem of solving a nonlinear system is ameliora
by the existence of efficient solvers, like TNPACK [22], based on a minimization fc
mulation employing preconditioned conjugate gradient and sparse matrix techniques
implicit methods are still not generally computationally competitive with explicit formt
lations. Still, implicit methods might be useful for exploring phase space, that is, find
conformations of low free energy and suggesting pathways for conformational chat
[11, 6]. Current techniques for enhanced sampling, like high-temperature dynamics,
represent the true dynamics. In addition, cheap imitations of implicit methods, wh
are implicit in only the stiffest terms and/or are only linearly implicit [30], might b
useful.

Symplectic integrators form a large class of methods that possess favorable pre
ties for the numerical simulation of Hamiltonian dynamical systems [19]. In particul
symplecticness in the small-timestep regime implies numerical stability without artific
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damping. However, when multiple timescales are present in the physical system, this
merical stability can typically be attained only if the timestep size is limited to less than
value based on accuracy considerations alone.

To circumvent this timestep limitatiomnplicit symplectic schemes have been appliec
Unfortunately, at large timesteps relative to the period of the fastest motion in the -
tem, even implicit symplectic integrators can become unstable when applied to nonli
Hamiltonian systems. This type of instability has been reported for the implicit midpc
(IM) method [9, 13, 24] and is surprising, given that IM is not only unconditionally stak
for a harmonic oscillator but exactly conserves energy for all time-steps,

In a more recent study of a nonlinear oscillator integrated by IM, Mandziuk and Schl
[15] offered additional insights into the mechanisms that trigger nonlinear instability. Tt
related the numerically perturbed period of the oscillator to the timestep of discretiza
and observed high energetic fluctuations, or instability, when these two are in reson:
This purely numerical artifact is especially severe for third- and fourth-order resonance
in the case of the former, always leads to instability. (The resonance orééers to the
number of phase space points sampled in a closed orbit of a finite period. A resonar
labeledm: n if a period cycle of lengtn involvesm rotational sweeps in phase space.
Furthermore, for the Verlet scheme, it was shown [15] that instability occurs at timest
which satisfy the linear stability condition. These instabilities can only be avoided by
stricting At.

Hints of resonance problems can also be found in an interesting article of Sanz-Serna
This study applied the Moser twist theorem to show that if third (3:1) and fourth (4:1) or
resonances can be avoided, stability at equilibrium is guaranteed for the symplectic E
method (equivalent to the leapfrog/Verlet method). The consequences of these reson
are not discussed; see also Ref. [16]. Nonlinear resonance has also been observec
explicit semi-analytical symplectic integrator for planetary motion [27].

In general, nonlinear instabilities are encountered for substantially smaller stepsizes
those predicted by linear stability analysis. Uncovering their primary source in macromo
ular dynamics with large timesteps is important for overcoming the instability problem :
increasing the feasible timestep of integration. Finding cures besides just reducing
timestep forms a major challenge.

In this paper, we present a family of symplectic schemes closely related to IM [25]
which there is no such stability limitation on the timestep. To illustrate this idea and
alyze nonlinear resonances, we apply IM, Verlet, and two new symplectic schemes
and LIM2) to two simple nonlinear systems: two atoms interacting via Morse or Lenne
Jones potential. To test the idea on a multimode system, we also apply the integrators
22-atom molecule, N-acetylalanyl-¥hethylamide (commonly known as alanine dipep
tide), modeled with the CHARMM forcefield [5]. We thus show how methods can
designed to delay or essentially eliminate resonance per se and also how simple
dimensional analysis of resonances is useful for analyzing behavior in a more com
molecular system.

In the next section, we review the integration methods used in this paper. Section 3
cusses the resonance conditions for these schemes and presents methodologies for r
of instabilities. In Section 4, the results of simple numerical experiments are presented
in Section 5 the results for alanine dipeptide are reported. Conclusions are summariz
Section 6.
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2. A ONE-PARAMETER FAMILY OF INTEGRATION METHODS

A. Definitions

When IMis applied to a harmonic oscillator, the oscillation frequency is distorted depe
ing on At. As a result, the numerical phase-angle change per timestep suffers a redu
from its actual value. This reduction becomes dramatic as the timestep increases. The
angle change never exceetlsadians per timestep, regardless of the analytical value.

To clarify the relation among various methods, we formulated a one-parameter famil
symplectic integrators [25]. The family’s unifying feature is the discrete approximation
the force vectoF at timenAt:

F'= F(X" + aAt?M~IF"), )

Here, X" represents the discrete approximation & timenAt, and the parametercharac-
terizes each method in the family. The value ;11 corresponds to IM (which is equivalent to
the trapezoid methody, = liz becomes the fourth-order@tiier—Cowell/Numerov method,
anda = 0 is the known Verlet scheme [25]. The integration scheme is implicit wherD.

The parametes affects the relationship between the numerical frequency and the
tual frequency of the system. Specifically, the maximum possible phase angle chang
timestepdecreasess the parameter increasesHence, the angle change can be limited
In particular, the choice > % limits the phase angle change to less than one-quarter ¢
period. This should ensure that notable oscillations will not occur due to fourth-order re
nance. The scheme corresponding te % was suggested by Zhang and Schlick [29], wher
it was termed LIM2 (for a midpoint-variation scheme designed for Langevin dynamic
The choicex > % (including LIM2) guarantees that the phase angle change per times
is less than one-third of a period and avoids nonlinear instability for the Morse poten
We call the scheme correspondingdte- 3 “equally weighted” (EW), since the discrete
position vectors at three consecutive timestegs;t, X", X"*1, are equally weighted for
the force evaluation in a particular form [25] of the scheme (which we call 2M).

The family of methods characterized by Eq. (2) has several equivalent discretiza
forms [25] for a giverw. This equivalence means that a local transformation exists to rel
the state variables of one method at a given time to those of the other method.

In this article we use the family form “OneM” (to designate a one-step method an
midpoint evaluation of forces) [25]. Assuming that at tim&t the position and velocity
vectorsX" andV" are known, the propagation to tinie + 1) At is then defined by the
expressions:

At
X2 — oxn 7\/”’ (3a)
FN+L2 — B (X2 | g APMLENHL2) (3b)
VML = V0 AtMTLIEM2, (30)
At
XL — /2 7Vn+l' (3d)

The equation forlF "*%/2 is implicit for « # O (i.e., the unknown force vector appears a
both sides of the equation and cannot be obtained in closed form). Assuming that sy
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(1) is conservative, withr (z) = —VU (z), the negative gradient of the potential energ)
system (3) can be solved by minimizing ttignamics function

P (X) = %Arz(x — X5) "M (X = X§) + U (X) 4)

for X and then evaluating at this point. HereX§ = X" + (At/2)V"; see Refs. [17, 29]
for derivation of the dynamics function for implicit methods.

B. Linear Stability and Energy Conservation

We now discretize the equations governing the motion of a harmonic oscillator by sys
(3) and perform algebraic rearrangements to obtain the recurrence expressions

wxn+l wXn
{Vn+l:|zs{vn:| (5)
for the positions and velocities, where the matrix

. [1 — LAt wAt(1- %<wAt>2¢>] 6)

—pwAt 1- 2(wAh)%
and the parameter
¢ = 1+ (wAt)%a) L. 7)

Thus, the evolution of the discrete system depends on the properties of the $nhimigar
stability is achieved whetwAt)%¢ < 4, i.e.,

(wAD)?/(1+ (wAD)?a) < 4. (8)
In this caseShas imaginary eigenvalues, €4 weAt), where

weff At = 2 arcsir<w7At \/$> (9)

1 o

= wAt
@ +<24 2

)(a)At)3 + O((wA)®).

Consequentlyscan be decomposed as

S=DQD™, (10)
where
COSweff At SiNwesAt
= ) 11
Q [—smweﬁm COSweffAt] (11)
and

1 —1/2
D= diag[l, (1+ <a — 4) (a)At)2> ] ) (12)

The matrixQ represents a rotation efwe At radians in phase space.
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FIG. 1. Effective rotation (wesAt) from Eq. (9) versus desired rotatiowAt) for one timestep for
@=01114

Note thatx =;11 (IM method) implies thaD is the identity matrix, rendering the trans-
formation unitary and guaranteeing exact energy conservation [25]. For other value
a, the energy oscillates; the ratio of the maximum to minimum energy is given
max{1+ (¢ — H(wAt)?, (1+ (@ — 3)(wAt)®)~1}. Furthermore, deviations @ from the
identity matrix adversely affect the time-averaged partitioning of energy between kin
and potential energy.

Figure 1 shows the effective rotation versus the desired rotatiend0, 1, 1, Z accord-
ing to Eq. (9). (For IM, Eg. (9) simplifies tessAt = 2 arctaiwAt/2)). The straight line
representsthe ideal value. We see that, wh&his small, all curves approximate the straigh
line well, but aswAt increases the curves exhibit different behavioraAst — +o0, the
effective rotations forr = %, %, 3 approach the limiting values of, 27r/3, 7/2, respec-
tively.

C. Postprocessing

Interestingly, the symplectic transformation

1 -1/4 1 1/4
0= (14 (o= Dorr?) e o= (14 (o= Dorr?) 0 9

yields “postprocessed” values that exactly conserve energy [25]. (Here we use mémet
andp instead of velocity .) It is unclear, however, how to define a meaningful transform
tion for postprocessing the values obtained for the general nonlinear conservative sy
(Eg. (1)) so that energy conservation is achieved if the system is linear. For this purp
we propose the transformation

X = X+ ¥ (M~ U (X))IM 7 Ux(X), (14)
p= (I + @OM U(X))NNM LU (X))x) P, (15)
where the subscript denotes differentiation with respect¥a n = (¢ — 1)(At)?, and

~ya _
vE) = (”5)5—1 A4+ H A+ A+ O IA A+ 5L (16)

This function is well defined i is generalized to a symmetric positive definite matrix.
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The postprocessing formulation above is symplectic for general nonlinear problems
yields valuesx and p that exactly conserve energy in the linear case. (To see that
transformation is symplectic, note that it arises from the second-kind generating func
S(X, p) = pTX 4+ p" ¥ (nM~1U, (X)) nM LU, (X)). This transformation is not cheap, but
it is not intended to be applied in practice. Rather, its purpose here is to permit compal
of methods on the basis of the accumulating part of the error, not removable by a phase !
transformation. For a cheaper postprocessing, we could approxifmate polynomial on
some interval of values with ranging from O to(a — %)(a)At)Z. Further approximations
are also possible [14, 25] based on differencing the computed valuesif P.

The transformation (14), (15) is not necessarily the one that best conserves the er
rather it is a heuristic choice that does remarkably well. Postprocessing is discussed ft
in Refs. [14, 25], where it is shown that there are limits on the accuracy improvements
are possible with such transformations.

3. NONLINEAR INSTABILITY, RESONANCE, AND A POSSIBLE CURE

Nonlinear stability for fixedAt can be investigated analytically in the neighborhood ¢
an energy minimungxo, po) for a system with one degree of freedom via the Moser twi
theorem. Analysis is possible via asymptotic expansions in powets-oko and p — po.
Essentially behavior depends on the angle of rotation per step (see Appendix 7 of
[1]); and is given by the linear terms of the expansion. If this is one-third of a circle (3
resonance), the equilibrium point is unstable. If it is one-fourth of a circle (4 : 1 resonan
the situation is indeterminate—it will depend on the mapping defined by one timeste
the method applied to the problem. For higher order resonances (e.g., rotation of two-1
of a period, 5:2 resonance), the equilibrium point is normally stable [20]. The resul
[20] can be paraphrased as follows: Assume that we have a numerical method describ
an area-preserving map in the plane for which the origin is an elliptic equilibrium so t
the eigenvalues of the linearized map are complex conjuga&n;ifwith unit modulus.
Further, assume thatis neither a cubic nor a fourth root of unity. Then the origin is
stable equilibrium except, perhaps, in the “degenerate” case that the mapping acts as «
rotation plus terms of order 4 in— Xg andp — po.

Mandziuk and Schlick observed that IM applied to the Morse oscillator (see formulat
below) exhibits instability for the 3 : 1 resonance but notfor 4 : 1 nor higher-order resonar
(although energy fluctuations are very large) [15]. For a large complex system with m
fundamental frequencies or instantaneous normal modes, this suggests that the tin
mustbe limited to less than one-third or one-quarter of the effective period of the highe
frequency modeajepending on the scheme and possibly the problem.

It is evident from Eq. (9) and Fig. 1 that a sufficiently laigean lower the maximum
rotation angle per step as needed. In particular, since a resonance ofi onéans thah
phase space points are computed per effective period, resonances of anddower will
be eliminated ifx is large enough so that the numerical rotation per step satisfies

wefAt < 27/ 17)

for all At. This is equivalent to

«> <2 sin’é) - (18)
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The first few values given by this formula are

n| 2 3 4 5 6
1 1 1 (5++/5)
af 3 3 2 T 1

The vaIueoz:%1 (IM scheme) is the minimum value needed for unconditional line:
stability; the valuex = % (EW scheme) is the smallest value that guarantees uncon
tional nonlinear stability for the Morse potential; and the value- % (LIM2) or greater
guarantees nonlinear stability for general potentials.

For a givenw, we can also calculate thgper limiton thetimestep(rather than lower
limit on «) needed to avoid a resonance of ordeBpecifically, if (2 sin(z/n))~? > «, a
timestep satisfying

2sin(zr/n)

V1 — da sirt(r/n)

wAt <

(19)

avoids a resonance of order

In Table 1 we list these limiting values for interesting combinationsarfidn. The values
for n=2 are also the limits owAt for linear stability. We show in the next section for
Morse and Lennard—Jones potentials that for VEdet 0) the 4 : 1 resonance is unstable,
and hence nonlinear stability imposes a restrictior/@ on wAt, significantly less than
the linear limit of 2. Experiments suggest, however, that the 4:1 resonance is stabl
a =13, %, 1. This points to anonlinear stability limit okZ3 for IM (« = §) and no restriction
forEW (¢ = %). Numerical results also suggest significant fluctuations due to 5: 1 and ¢
resonances for Verlet, 4:1 and 5:1 resonances for IM, and 4:1 resonance for EV
contrast, LIM2(a = %) exhibits no such erratic patterns.

In unconstrained molecular dynamics of biomolecules modeled at atomic resolut
the highest mode has a period of about 9 fs, corresponding to a vibrational frequenc
3600 cntl. For Verlet, the analysis above suggests a limit on the timestep of 2.0 fs to pre:
instability, 1.7 fs to avoid 5: 1 resonances, and 1.4 fs to avoid 6 : 1 resonances.

Not surprisingly, we face a trade-off between stability and accuracy. As indicated
Eq. (9), the discretization error is proportional|&o— 1i2| for smallwAt, so IM has twice
the error of Verlet, EW has three times the error of Verlet, and LIM2 has an error largel
a factor of five. This is not the case, though, for large valuessf (Fig. 1), for which the
Verlet curve diverges most rapidly. In addition, when stability is limiting the stepsize, E
(and possibly also LIM2) permits a larger timestep than does Verlet for equal accurac

TABLE 1
Stability Limit on wAt for Interesting Combinations of o and n

Resonance order Verlet = 0) M (@ =3) EW (o = 3)
=2 2 00 [e'9)
n=3 V3~ 172 2/3~3.46 00
=4 JV2~141 2 V6~ 245
=5 14/10- 245~ 118 2y/5-2J/5~ 145

n==6 1
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4. SIMPLE NUMERICAL EXPERIMENTS: EW, LIM2 AND IM VERSUS VERLET

We first examine simple systems where resonance phenomena are much easier to o
and interpret.

A. Morse Potential

We begin with the HBr Morse potential as used previously [15],
U(r) =D(1—e )2 (20)

wherer is the bond lengthD =905 kcal/mol, S=1.814 A1, andro=1.41A (1 kcal
mol = 4.184 x 104 amuﬂzlfsz). The two atoms with masses; andm, move in one
dimension. Their positions are denotedkagndx, (X; < X2), and they interact according
to the force produced by the potentia(r). The bond length is then given by= x, — x,
and its conjugate momentum lpy= (X2 —X1), whereyu is the reduced mass of the diatom:
w = mgmy/(mg + my). In terms of these variables, the motion of the system satisfies
equations

==, p=-U), (21)

T o

associated with the Hamiltonian

2
Zp_u + U (r) + constant translational kinetic energy (22)
As before, we usen; = 1.00785 amu andh, = 79.904 amu for the hydrogen and bromine
atoms, respectivelyu(=0.9953 amu) [15]. For the calculations illustrated in Figs. 2 an
3 the same initial conditions are also use)=1.4155A and p(0) = 1 (1.545 A)/
(48.888fs.

To inspect resonance trends, we compute the energy variation as a functionTdfe
reported values represent tin@ximum energy variatioover 1000 stepgxpressed relative
to the initial energy The interval between various timesteps is chosen adaptively, so a
achieve an informative plot clustering near resonances.

The effect of reducing the energy error by postprocessing for Verletand EW can be se
Fig. 2 (recall that postprocessing has no effect for IM). Plotted for a range of timesteps i
relative energy variation for a solution not subject to postprocessing, a cheaply postproc:
solution that uses central time differencing [25], and a fully postprocessed solution.

For Verlet (Fig. 2a), the graphs have spikes of increasing heights corresponding to
6:1,5:1,and 4: 1 resonances, the last of which becomes unstable. The straight dashe
corresponds to the depth of the potential energy well. This plot is very similar to that sh
in Mandziuk and Schlick [15]. It is different, however, from Fig. 4 of Ref. [16], where tt
maximum energy variation is plotted as a function of initial energy for a fixed timest
this latter plot is based on the same data as numerical phase space plots, which we ¢
Figs. 5b—5d. For EW, in contrast to Verlet, only the 4:1 resonance appears (for all tl
degrees of postprocessing) and it is stable (Fig. 2b). Note, that the timestep range fo
is five times larger than for Verlet. Also observe that resonance fluctuations in both fig
are revealed more clearly after postprocessing. For that reason, in the further analy
this section, only postprocessed results are displayed.
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FIG. 2. The effect of postprocessing on relative energy variation versus timestep for the Morse oscillato
the (a) Verletla@ = 0) and (b) EW(a = %) schemes. Shown for comparison is the dissociation enerdivided
by the initial energy.



NONLINEAR RESONANCE ARTIFACTS 11

100 T T T t T T T
ol : M (a=1/4) |
| Verlet (0=0)
@ :
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£ 1 :
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2 4 6 8 10 12 14
time step [fs]

FIG. 3. Relative energy variation versus timestep for the Morse oscillator for postprocessed¥eded,
dashed line) and IMo = % solid line with instability near 7 fs), postprocessed EM& % thick solid line with
only one peak near 5 fs), and postprocessed LIM2(3, solid line with no peaks). Shown also is the dissociatior

energyD divided by the initial energy.

100 — T T T v T
10 k
’é o = 0 (postprocessed)
5
=
2
£ I3
£
x
«
é o = 1/3 (postprocessed)
0.1 4
0'01 ;. L L L L L L

2 4 8 10 12 14
time step [fs]

FIG. 4. Relative energy variation versus timestep liaggher initial energyfor postprocessed Verlei (= 0,
dashed line) and postprocessed EM& % solid line). Shown also is the dissociation ene®yylivided by the

initial energy.



12 SCHLICK ET AL.

(a)

-0.1}

FIG. 5. Morse oscillator orbits for increasing values of energy: (a) analytical solutions, versus numer
solutions atAt = 4 fs: (b) IM (¢ = 3); (c) EW (@ = }); and (d) LIM2 @ = 3).

The relative energy variations for the three implicit methods (IM, EW, LIM2) are pr
sented in Fig. 3 and compared to results obtained with Verlet. The graph for IM (bott
solid line) has, from left to right: spikes of increasing heights, corresponding to the 6
5:1, and 4: 1 resonances; an open peak araung: 7 fs for the unstable 3: 1 resonance
and a spike around 12 fs for the 5: 2 resonance. (Tieresonance can be identified from
the trajectory values as a periodic cycle of lengihvolving m rotational sweeps in phase
space). For EW (middle solid line), the 4 : 1 resonance is significantly less severe that
5:1 resonance of Verlet. LIM2 (top solid line), which corresponds to the latgedbes
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FIG. 5—Continued

not exhibit resonance, but rather a difficulty in solving the nonlinear equation for la
timesteps. The energy error is also larger.

Figure 4 shows the effect of increasing the initial energy for EW and Verlet; by doubli
both p(0) andr (0) — rg, we roughly quadruple the energy error. Now we see an incres
in the error, but the resonance pattern remains essentially the same (compare with Fi

Nonlinear resonances can also be visualized from phase-space portraits as island re
In Fig. 5a we show the analytical orbits for the Morse oscillator corresponding to increas
energy levels (from the innermost orbit outward) [15]. Figures 5b—5d show the phase s
portraits corresponding to IM, EW, and LIM2, respectively, each with= 4 fs. The period
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of the Morse oscillator is energy dependent and for the range for energies covered in Fi
it varies from around 12.5 fs to 40 fs. The plot for IM reveals resonances of orders 9
5:1,and 6:1. The 9:2 resonance is just outside the inner two orbits (it was determ
to be 9:2 rather than 9:1 resonance by inspection of the trajectory). The 5:1 and
resonances are outside, in a chaotic sea of instability. EW (Fig. 5c¢) exhibits resonanc
orders9:2,5:1,6:1,7:1,and8: 1. LIM2 shows resonances of orders6:1,7:1,8:1,
9:1.

Itis clear from the plots that with increasinghe onset of chaos is shifted towards highe
energies (lower frequencies). In all cases, however, there are serious deviations fror
analytic trajectory as the energy increases. The square-shaped, lower energy contot
IM indicate the timestep proximity to the fourth-order resonance. The contours for EW
LIM2 are smoother, but with increasingthe region of phase space with a bond lengt
below the equilibrium value is more corrupted.

B. Lennard-Jones Potential

We now consider a Lennard—Jones potential describing the interaction between two ¢
atoms [18],

Ur) =el—2(a/r)%?% (23)

wheree =120 K x kg ando = 3.4 A (the Boltzman constarks = 8.244 x 107 amuA?2/
fs?/K). We use the masses, = m, = 39.95 amu(i = 19.975 amy and the initial conditions
r(0) = 1.150 andp(0) = 0.

Figure 6 shows the corresponding energy for Verlet, IM, and EW. The dotted cul
for Verlet, has from left to right spikes of increasing height for the 7:1, 6:1, and 5
resonances. The solid graph, for IM, has a spike for the 6 : 1 resonance. The dashed
for EW has no spikes. Verlet is more accurate than IM and EW at small timesteps. Thatt
reverses with increasettt. It appears that overall energy fluctuations, as well as nonline

101

50 00 150 200

0.1f

0.01

0.001}

0.0001*

FIG. 6. Relative energy variation for postprocessed Vedet(0, dotted line) versus IMo = % solid line)
and EW ¢ = % dashed line), obtained for a Lennard—Jones potential for argon as a function of the time:
Shown also is the dissociation enekgglivided by the initial energy.
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resonance peaks, are far less dramatic for the Lennard—Jones than the Morse pot
Typically, only the Lennard-Jones potential is used in most biomolecular force fields.

In sum, simulation results for these simple systems clearly show that our symple
implicit schemes EWa = %) and LIM2 («¢ = %) eliminate the low-order resonances tha
lead to the highest energy fluctuations or instability in other methods like IM. Our posty
cessing strategy is effective for accentuating resonance trends. Still, energy fluctuatior
relatively large even without the sharp resonance effect, and these effects on the sys
dynamic properties should be more closely examined.

5. APPLICATION TO MOLECULAR DYNAMICS OF A PEPTIDE MODEL

Our goals in this section are twofold. First, we seek to determine whether the symple
implicit integrators EW and LIM2 improve numerical behavior over IM by eliminating
or reducing the severity of, low-order resonances. Second, we seek to establish how
our harmonic-oscillator analysis of resonances for IM is for a complex, nonlinear,
multiple-timescale system. In particular, is it possible to determine the discrete time
values, where a resonance of a given order will occur? That is, can the source of resot
be attributed to one vibrational mode? Furthermore, if discrepancies occur between |i
theory and nonlinear applications, how large are they and how can they be interpretec

We choose the model system N-acetylalandaiethylamide shown in Fig. 7. Its chem-
ical composition is given by CEHHCO-NH-CHCH;—CO-NH—CHjs. This 22-atom system
contains representative characteristics of polypeptides (such as main chain dihedral-
motion) and is particularly flexible, making it a good test case.

Calculations were performed with the CHARMM program [5] (version 24b1), modifie
to perform implicit integration in the OneM form (system (3)) for a specitied 0. An
all-atom representation was used with the CHARMM parameter set 22. Minimization of
dynamics function (4) was accomplished with the truncated-Newton minimization pack
TNPACK [22], using X" as the initial condition. The TNPACK convergence paramet
EPSF was set in the range£6-10-%2. Even though the timestep in the implicit scheme i
larger by a factor of up to 10, the implicit schemes are more expensive for covering the
trajectory time. As we have shown in a closely related context [2], speedup in referenc
explicit simulations at 0.5-fs timesteps would only be obtained for the dipeptide when
timestep exceeds 20 fs.

FIG. 7. Blocked alanine (“dipeptide”) model.
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To identify the timesteps at which instabilities occur, trajectories of 100,000 steps w
analyzed for a range of timesteps (in increments of 0.1fs). For the smalteased,
1fs, 100,000 steps correspond to 100 ps. The average values of the total Enangly
its components are accumulated and displayed after 20,000, 60,000, and 100,000
to clarify the energetic convergence pattern. Plot$Ef versusAt for Verlet, IM, EW,
and LIM2 are shown in Fig. 8. We emphasize that longer simulations, or a more freqt
sampling ofAt and different starting points, might produce different curves.

Note also that Fig. 8 reveals a quadratic growth of error with the timestep, confirming
second-order accuracy of the symplectic methods applied here. Low-order methods are
cally usedin biomolecular MD since the highly approximate nature of the potential functi
does not merit high-order integrators. In addition, the existence of serious instabilities
to the very stiff, oscillatory high-frequency degrees of freedom argues against higher-c
schemes which will likely only have stricter restrictions on the timestep, thereby increa:
the practical simulation cost considerably.
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A. The Effect of the Parameter

Instabilities are revealed in Fig. 8, which displays patternsE)f versusAt for the
Verlet, IM, and EW schemes. As expected from our analysis of simple problems, the o
of instability is delayed with increasing. For Verlet, the onset of instability emerges a
timesteps around 2.8 fs. For IM, instability emerges around 4.5 fs, and for EW around
The plot for LIM2 (bottom panel) does not display energy spikes. Instgadincreases
smoothly, but significantly, over the range of analyzed(1-11 fs).

B. Resonance Analysis of IM

Explaining the instabilities is much more involved for a multimode system than fo
simple system. First, an accurate comparison of fluctuations would require a more
tended sampling of their values than done here. This entails very long calculations for
timestep—especially near resonances. (For the Morse oscillator we used 100,000 st
ensure reasonable convergence near resonance [15].) Second, intramolecular energy
fer prevents clear analysis of the resonance origin; it cannot be easily determined wh
certain modes are more active due to numerical artifacts or to mode coupling. In a
tion, the interplay between these two factors makes the long calculations impractica
resonance diagnostics—extension of simulation time increases the probability of en
transfer.

To identify the fastest modes in alanine dipeptide and apply our analysis for c
dimensional (1D) systems [15], we generated a power spectrum (Fig. 9) from an IM tra
tory usingAt = 0.5 fs. The main peaks in the high frequency region corresponetbtidnd
stretching around.83fs™* (period of 9.97 fs) and €H bond stretching around 85 fs*
(period of 11.42 fs). In Table 2 we list the timesteps for IM and Verlet that lead to 3:1 ¢
4:1 resonances for these frequencies according to our 1D analysis. A comparison c
values in Table 2 with Fig. 8 reveals the possible cause of instability.

For Verlet, instability may result from the third-order resonance of ahl Ntretch, the
fourth-order resonance of a-l stretch, or an interplay between both vibrations. Howeve

H-C-H
C-N-H C=O stretch C-H N-H
bends stretch stretch

' '

l T T 1 ¥ ‘ LI L L | LI L I T T 7 7 | LI ]
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FIG.9. Power spectrum for the dipeptide from an IM trajectory ushig= 0.5 fs, with some typical frequen-
cies identified.
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TABLE 2
Timesteps for the 3: 1 and 4 : 1 Resonances offfl and C—H Vibrations According
to Analysis of One-Dimensional Systems for IM and Verlet Integrators

\erlet IM
Resonance
order N-H CcH N-H CcH
n=3 2.8 3.2 5.5 6.3
=4 2.2 2.6 3.2 3.6

Note The estimates for the resonant timesteps from a one-dimensional [14] analysis are obtained
as follows. Equation (9) of the text gives the timestep and method-dependent angular frequency
for the symplectic methodes = we At = 2 arcsin/pwAt/2), whereg = (1 + a(wAt)?)~! and
w is the natural frequency of the system. For (M= 1/4) wes = (2/At) arctaniwAt/2), and for
Verlet (o = 0) wer = (2/ At) arcsinwAt/2). As derived in Ref. [14], the resonant timestep of or-
dern:m can be obtained by using the functiags in the expressiomAtwes = 27m, since those
timesteps correspond to a samplingigfhase-space pointsinrevolutions. This substitution yields
At = (2/w) tan(zm/n) for IM and At = (2/w) sin(zm/n) for Verlet. Forn=3, 4, andm=1, we
have:Aty; = 2¢/3/w and Aty = 2/ for IM; Atg; =+/3/w andAt,; = /2/w for Verlet.

for IM, the analysis of NH and CH stretching vibrations alone is insufficient to explair
the instability onset at about 4.5 fs.

Figure 10 displays the average kinetigcJ and potential ) energy, as well as the
E, components, for IM. We see th& and E, are partitioned nearly equally and refleci
the pattern of instabilities of the total energy. Bond-stretching, as well as angle-ben
energies increase significantly in the region of instabilities; in contrast, torsional, van
Waals (vdW), and electrostatic contributions remain nearly constant throughout the r:
of timesteps examined. The rapid growth of the angle-bending energy—as fast as the |
stretching term—uwas surprising. This points to a strong coupling between the two mc
in the timestep region of instability.

Figure 11 follows the timestep variation of the power spectrum obtained for a hydro
atom involved in an NH bond for the IM method. The position of the high frequency pee
follows the predicted value according to Eq. (9). Hence, we expect 3: 1 resonance to oc
At =5.5fs. Indeed, the plots in Fig. 12 of the bond length evolution at this timestep for b
N-H bonds, as well as for the nearby = 5.2 andAt = 5.7 fs, show three branches. These
branches indicate the proximity to third-order resonance. Yet, judging from the rate of a
age energy growth, the instability At = 5.5 fs appears weaker thanat =5.2 or 5.7 fs.

The average values offl bond lengths and their fluctuations, although not converge
do not reveal any growth at the timesteps associated with resonance. This suggests tt
N—H bond resonance does not cause the instability observed, even though it has the st
period. To confirm this, we modified the stretching constants for tHd bond terms by
decreasing their value by about 30%. Indeed, this increase in the associated period d
remove instabilities aAt =5.2, 5.5, and 5.7 fs. Clearly, the-NH bond stretch, modeled by
a harmonic potential (for which IM is stable) is not the culprit here: the nonlinear forc
acting on the bond are not sufficiently strong to induce instability.

What, then, is the origin of this instability? Inspection of the average values of bc
lengths and their fluctuations (though not well converged) points to té lidnds as a
possible source. The variation of the power spectrum with the timestep obtained for
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FIG. 11. Timestep variation of the power spectrum for a hydrogen atom in-gth bond as obtained from
the IM trajectory.

C-H bond in a methyl group is presented in Fig. 13. While the main peak follows t
expected shift of frequency with the timestep (Eqg. (9)), a band of lower amplitude pe
appears on the high-frequency region of the main bandfor 2.0 fs. This band ends with
a peak in the region of 0.46-0.50fs which does not follow the prediction of Eq. (9). This
peak is only slightly shifted toward lower values of frequencies with increasing

The instability caused by this peak should occur just below the 4.5 fs timestep.
band might result from a timestep-corrupted coupling between ¢ lidbnd stretching
and H-C—H angle bending modes. This coupling increases in strength due to the times
induced shift of frequencies. A large increase of the angle-bending energy in the instat
region gives further support to our suggestion that angle bending may be an instat
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FIG. 12. Bond-length evolution for the dipeptide at timestejps=5.2, At =5.5, andAt =5.7 fs for both
N-H bonds, corresponding to the IM trajectory model.



23

NONLINEAR RESONANCE ARTIFACTS

At = 55 fs

12 14

time (ps)

FIG. 12—Continued
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FIG. 13. Variation of the power spectrum with the timestep for ordd®ond in a methyl group for the IM
trajectory of alanine dipeptide.

culprit. Inspection of the spectrum faxt =5.2fs in Fig. 13 shows a small peak arounc
0.405 fst, which may be in resonance of order 3 witlt. Indeed, a decrease of8
bond-stretching force constant successfully eliminated instabilit\toe 5.2 fs (as seen
from the 100,000-step simulations). Still, instability remained & 5.5 or 5.7 as before.

For At =5.7fs and higher, the onset of instability is very fast. There are at least th
possible explanations to this observation of chaotic behavior.

First, adequate averaging for the Hamiltonian trajectory cannot occur when the time
is so large.

Second, instability may be caused by @rerlapof the principal timestep resonances
Such chaotic zones induced by an overlap of resonances associated with the high-freq
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terms are revealed by Wisdom and Holman through their nonlinear stability analysi
the symplectic mapping for a planetanybody problem [27]. They determine the border:
and mechanisms of these gross instabilities through the application of heuristic too
nonlinear dynamics such as the Chirikov overlap criterion. Such criteria for estimating
widths of chaotic zones have been associated with regions near the pendulum sepa
the closer a trajectory is to the separatrix the smaller the timestep must be to avoid this
instability. This situation might only be relevant to molecular systems when the energ
large, say close to the bond dissociation limit.

A third possibility for the observed instability is some transient, nonlinear, and hic
frequency motion present in the system’s dynamics. Small, cumulative local fluctuat
caninduce sudden and large conformational changes, even for a relatively small systen
as our dipeptide. Nonbonded interactions are one possible source of instability that
the timestep in MD simulations. We find that the van der Waals energy does not incr
substantially with the timestep (Fig. 10) for the dipeptide, but changes in the electros
component are larger. For a molecular system in solvent, both forces are expected
stronger and play a major role in governing the system’s dynamics. In addition, the forme
and breakage of inter- and intramolecular hydrogen bonds for a solvated macromole
can dramatically increase the likelihood of instabilities [21].

6. CONCLUSIONS

This work examined the intriguing phenomenon of resonance in MD simulations. Re
nance is a pronounced integrator-induced corruption of a system’s dynamics. This sour
timestep limitation is not well appreciated, in general, and certainly analyses of reson:
patterns have been few in connection to MD. Nonetheless, resonances are present
commonly used Verlet integrator [15], as well as in symplectic implicit schemes typice
associated with favorable properties. These resonances can only be avoided by resti
the timestep beyond estimates based on linear stability. Formulas for this purpose are
in Tables 1 and 2. Table 1, in particular, includes timestep thresholds for the popular Vi
method.

As an extension of our resonance analysis for the implicit midpoint (IM) method [15],
considered here a family of symplectic implicit schemes, parameterized thyat exhibit
different resonance patterns. Our goal was to eliminate the most severe resonances
and fourth order) observed for IMv(= %) that lead to instability and very large energies
respectively, on a Morse oscillator. Our theory suggested that both the E\/@Xand LIM2
(¢ = %) integrators are better than IM since the limit on the maximum possible phase-an
change per timestep is smaller than IM (Fig. 1). Thus, according to linear stability analy
the EW method eliminates the third-order resonance, and LIM2 eliminates both third-
fourth-order resonances.

Our numerical experiments on two simple nonlinear systems—a Morse oscillator
a Lennard—Jones system—confirmed this analysis. That is, methods can be desigr
remove specific resonances. Furthermore, our application to a more complex dipe
model found EW and LIM2 to yield improvements over IM when the timestep was lar
relative to the fastest frequency of the system. Still, the growth of energy fluctuations \
the timestep, although far less erratic than that of IM, is large for EW and LIM2 wh
At > 6fs. For small timesteps, the increase of the systematic discretization error with
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timestep is 3 and 5 times larger than Verlet, respectively, for EW and LIM2. Toget
with the added cost of the implicit formulation (minimization of a nonlinear function
each timestep), the benefits of using these schemes is unclear, even if high accuracy
commensurate with the accuracy of the governing force fields. One possible utility of
methods developed here at such large timestep regimes is for enhanced sampling pur
Such sampling questions may be overall more important in macromolecular simulat
than determining a system’s dynamics.

Interesting also for the dipeptide was our analysis of the resonance patterns of
We found linear analysis to be helpful but not sufficient for identifying the timesteps
which resonance should occur (fractions of the characteristic period). In particular, it
difficult to attribute resonance to one particular vibrational mode. Rather, we found tha
complex interplay among intramolecular modes—namely bond stretching, angle benc
and torsional motion—leads to instabilities at much shorter timesteps than dictated by li
analysis. This is true for all the implicit methods analyzed here (which are A-stable). He!
the notion of resonance is blurred for multiple-timescale systems.

The tools presented here—a family of implicit symplectic integrators, postprocess
and predictive resonance theory for nonlinear systems—might also be useful in gel
for analyzing biomolecular dynamics. Clearly, our EW and LIM2 methods are steps
the right direction to eliminate nonlinear resonance—since they are effective on sin
systems. However, the nonlinear scaling of frequencies with the timestep poses a prc
for multidimensional systems, and further enhancements in this class of symplectic img
methods are required if much larger timesteps will be used.

An important related problem is the noted resonance [3, 4, 8, 12] exhibited by symple
generalizations of the Verlet method to multiple timesteps [10, 26]. These methods U
large timestep for the slowly varying forces and are most likely limited to 4 or 5 fs, near |
the period of the fastest motion. The resonances observed for multiple-timestep sch
occur for linear as well as nonlinear problems [8] and thus differ from the type of resona
discussed in this article. A linear analysis for several multiple-timestep schemes in B
and Schlick [3] shows that resonance can be eliminated by a special merging of the
and fast forces, as used in the LN (so called for its origin in a Langevin/Normal-mo
scheme [2]. The successful idea used in LN can be generally applied. A symplectic sct
for overcoming the 5-fs timestep barrier has also been proposed [8].
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